atten 20/04	/0015		Dont	No					lov ·	100	Marks
ime : 01:00-			Dept.						hax. :	100 .	marks
wer ALL qu Discuss the				SECT	rion	Α			(10 2	x 2 =	20 mark
The mean of was wrongly What are the The Karl Pea and Mean is Define the H What are the State any tw	v taken a e variou rson's c 29. Find Carl Pear e compo vo defini	as 82 oeffic d Mo rson' onent itions	2, find easures cient o de. 's coeff ts of tin s of ope	the corr s of disp f skewn icient of me serie erations erations	rect n persic ess o f corr es?. s rese resea	nean. on? f a dis relation earch. arch?	tribut 1.	ion is			
What are th Write down Define pure	the mat strategy	y and	l mixe	d strate	gy to	agame	+		4		40.35 1
Write down Define pure wer any FC	the mat strategy UR que	y and stion	l mixee ns:	d strate SEC	gy to TION	agame I B	2.	(•		40 Mark
Write down Define pure	the mat strategy UR que the mea	y and stion an, n	l mixeo ns: nedian	d strate SEC	gy to TION	agame I B	2.	(•		
Write down Define pure wer any FC Calculate empirical	the mat strategy UR que the mea relation	y and s stion an, n iship	1 mixed ns: nedian	d strate, SEC and mo	gy to TION ode fr	agame I B rom the	e follo	(wing o	•		
Write down Define pure wer any FC Calculate empirical	the mat strategy UR que the mea relation 1-10	y and stion an, n Iship	1 mixeo ns: nedian -20	d strate, SEC and mo 21-30	gy to TION ode fr 31-	agame IB rom the	e follo 41-50	(wing o	•		
Write down Define pure swer any FC Calculate empirical C.I F	the mat strategy UR que the mea relation 1-10 4	y and stion an, n ship 11	1 mixed ns: nedian -20 7	d strate SEC and mo 21-30 12	gy to TION ode fr 31-	agame IB rom the	e. e follo 41-50 5	(wing o	•		
Write down Define pure wer any FC Calculate Empirical C.I F Calculate St	the mat strategy UR que the mea relation 1-10 4	y and stion an, m ship 11 , Devia	1 mixee ns: nedian -20 7 ation fi	and mo 21-30 12 rom the	gy to TION ode fr 31- 6 follor	agame IB rom the -40	e follo 41-50 5 ata:	(wing o	lata a	nd ve	erify the
Write down Define pure swer any FC Calculate empirical C.I F Calculate St Cla	the mat strategy UR que the mea relation 1-10 4 andard 1	y and stion an, n ship 11 , Devia	1 mixee ns: nedian -20 7 ation fi	and mo 21-30 12 rom the	gy to TION ode fr 31- 6 follor	agame I B rom the 40 5 wing d 0 - 30	e follo 41-50 5 ata:	(wing o	lata a	nd ve	erify the
Write down Define pure swer any FC Calculate empirical C.I F Calculate St Cla	the mat strategy UR que the mea relation 1-10 4 andard 1 ss Interv quency	y and stion an, n iship 11 , Devia val	1 mixee ns: nedian -20 7 ation fr 0 - 10 8	d strate SEC and mo 21-30 12 rom the 10 - 2 11	gy to TION ode fr 31- 6 follow 0 20 16	agame I B from the -40 -40 wing d 0 - 30 5	e follo 41-50 5 ata: 30 – 12	(wing o	lata a	und ve	erify the
Write down Define pure wer any FC Calculate empirical C.I F Calculate St Cla Fre Calculate th	the mat strategy UR que the mea relation 1-10 4 andard 1 ss Interv quency e quartil	y and stion an, n iship 11 , Devia val	1 mixee ns: nedian -20 7 ation fr 0 - 10 8	d strate SEC and mo 21-30 12 rom the 10 - 2 11	gy to TION ode fr 31- 6 follor 0 20 10 follor	agame I B from the -40 -40 wing d 0 - 30 5	e follo 41-50 5 ata: 30 – 12	(wing o	lata a	und ve	erify the
Write down Define pure wer any FC Calculate empirical C.I F Calculate St Cla Fre Calculate th	the mat strategy UR que the mea relation 1-10 4 andard 1 ss Interv quency e quartil 0 2	y and stion an, n ship 11 Devia val	1 mixed ns: nedian -20 7 ation fi 0 - 10 8 viation	d strate SEC and mo 21-30 12 rom the 10-2 11 for the	gy to TION ode fr 31- 6 follor 0 20 10 follor	agame I B rom the 40 40 wing d 0 - 30 5 wing d	e follo 41-50 5 ata: 30 – 12 ata:	(wing o	lata a	und ve	erify the
Write down Define pure wer any FC Calculate empirical C.I F Calculate St Cla Fre Calculate th X 2	the mat strategy UR que the mea relation 1-10 4 andard 1 ss Interv quency e quartil 0 2 1	y and stion an, n aship 11 Devia val le dev 23 10	$\begin{array}{c c} 1 \text{ mixe}\\ ns:\\ nedian\\ \\ \hline \\ -20\\ \hline \\ 7\\ \hline \\ -20\\ \hline \\ \hline \\ 7\\ \hline \\ ation fr\\ \hline \\ 0 - 10\\ \hline \\ 8\\ \hline \\ viation\\ \hline \\ \hline \\ 24\\ \hline \\ 7\\ \hline \end{array}$	d strate SEC and mo 21-30 12 rom the 10 - 2 11 for the 25 4	gy to TION ode fr 31- 6 follov 0 20 10 follov	agame I B rom the 40 $40wing d0 - 305wing d265$	e follo 41-50 5 ata: 30 – 12 ata: 30 3	(wing o 40 4 9	lata a	und ve 0 50 4	erify the
Write down Define pure swer any FC Calculate empirical C.I F Calculate St Cla Fre Calculate th X 2 F 6 Fen competioned	the mat strategy UR que the mea relation 1-10 4 andard 1 ss Interv quency e quartil 0 2 tors in a	y and stion an, m ship 11 Devia val le dev 23 10 t beat	1 mixed ns: nedian -20 7 ation fr 0 - 10 8 viation 24 7 uty con	d strate SEC and mo 21-30 12 rom the 10 - 2 11 for the 25 4 ntest ar	gy to TION ode fr 31- 6 follor 0 20 10 follor e ran	agame I B rom the 40 $40wing d0 - 305wing d265ked by$	e follo 41-50 5 $41-50$ 5 $30 -$ 12 $30 -$ 30 3 7 three	(wing o 40 4 9	$\frac{0}{0} = 50$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	erify the
Write down Define pure swer any FC Calculate empirical C.I F Calculate St Cla Fre Calculate th X 2 F 6 F	the mat strategy UR que the mea relation 1-10 4 andard 1 ss Interv quency e quartil 0 2 1	y and stion an, n aship 11 Devia val le dev 23 10	$\begin{array}{c c} 1 \text{ mixe}\\ ns:\\ nedian\\ \\ \hline \\ -20\\ \hline \\ 7\\ \hline \\ -20\\ \hline \\ \hline \\ 7\\ \hline \\ ation fr\\ \hline \\ 0 - 10\\ \hline \\ 8\\ \hline \\ viation\\ \hline \\ \hline \\ 24\\ \hline \\ 7\\ \hline \end{array}$	d strate SEC and mo 21-30 12 rom the 10 - 2 11 for the 25 4	gy to TION ode fr 31- 6 follov 0 20 10 follov	agame I B rom the 40 $40wing d0 - 305wing d265$	e follo 41-50 5 ata: 30 – 12 ata: 30 3	(wing o 40 4 9	lata a	und ve 0 50 4	erify the

16. What are the characteristic of operation research?17. Obtain the initial basic feasible solution of the transportation problem by using Vogel's Approximation Method (VAM).

 		`	,		
	D_1	D_2	D_3	D4	Availability
A_1	10	18	11	7	20
A ₂	9	12	14	6	40
A ₃	8	9	12	10	35

Variance Find (i) (ii) 20. a) Fit a structure the tren	Skewness arad interpretad interprets.)100-120rs1ly destroyedesults weree of X = 9 Rothe meathe coeri)the varialaight line tr	nd kurto them. 120 – 14 3 d labora obtaine egressio an value fficient	atory reed: on Eques of X	0 – 160 7 ecord o ations and Y	ethod of r 160 – 180 20 f an analy	noments fo 180 – 200 12 vsis of corr	or the follo 200 – 220 4	220 - 240 3 (20)
 18.Calculate S distribution ar Daily wages(Registribution ar Daily wages(Registribution ar No. of worker 19.In a partial following registric following registric	Skewness arad interpretad interprets.)100-120rs1ly destroyedesults weree of X = 9 Rothe meathe coeri)the varialaight line tr	nd kurto them. 120 – 14 3 d labora obtaine egressio an value fficient	40 140 atory reed: on Equ es of X of corr	0 – 160 7 ecord o ations and Y	160 – 180 20 f an analy	noments fo 180 – 200 12 vsis of corr	or the follo 200 – 220 4	owing 220 - 240 3 (20)
No. of worker 19.In a partial following r Variance Find (i) (ii) (iii) 20. a) Fit a stra the tren	ly destroyed esults were e of X = 9 Re the mea) the coer i) the vari	3 obtaine egressic an value fficient iance of	atory re ed: on Equ es of X of corr	7 ecord o ations and Y	20 f an analy	12 vsis of corr	4	3 (20)
19.In a partial following r Variance Find (i) (ii) (iii) 20. a) Fit a structure	ly destroyed esults were e of X = 9 Re the mea) the coe i) the vari aight line tr	l labora obtaine egressic an value fficient iance of	ed: on Equ es of X of corr	ecord o ations and Y	f an analy	vsis of corr		(20)
following r Variance Find (i) (ii) (iii) 20. a) Fit a str the tren	esults were e of X = 9 Re the mea) the coe i) the vari aight line tr	obtaine egressic an value fficient iance of	ed: on Equ es of X of corr	ations and Y	-		elated dat	· · ·
Value		-	Jation	by the ng data	n between method c a:	X and Y)4 (20)
b)Calculate Se				ollowin 1975		ing Simple	e Average I 197'	<u> </u>
Quarter				76		7.4		
I II	68			76 70		74 66	76 74	
III	80			82		84	84	
IV	70			74		80	78	
Subject + x + y ≤ 3x + 8y 10x+ 7y≤ x , y ≥ (b)) solve the	ie Z = 5x to constrain 4 ≤ 24 35 0 following g Player A ₁ B ₁ -2	+ 7y nts, ame, us A A ₂	sing do			PP.		(10)